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Abstract—Designers and developers of artificial intelligence
(AI) can begin pursuing trustworthiness in an AI-enabled system
long before it reaches an end user. Early in the AI lifecycle, data
curation affords an opportunity for data scientists to promote
trustworthiness by choosing data transformations and splits that
prioritize performance in the deployed environment, not just on
the data available for training. Key to enabling such purposeful
data curation is the elicitation of actionable domain knowledge
from various sources, including experts in the field in which
the AI-enabled system will be used. In this paper, we offer a
framework and set of questions for eliciting domain knowledge
that drives data curation for trustworthy AI.

Index Terms—trustworthy AI, data curation, subject matter
expertise, knowledge elicitation, domain knowledge

I. INTRODUCTION

In projects with strong data science components, data sci-
entists primarily focus on developing machine learning (ML)
models, generating data analyses, finding trends, and managing
data [1]. The work of building models and managing data
typically includes data curation: the process of preparing
an existing dataset for use with an AI-enabled system. Data
curation refers to the activities after dataset creation (e.g., col-
lection, annotation) and before finishing model training. Data
curation includes activities like data munging, data cleaning,
and data splitting. As part of the data curation process, data
scientists typically develop an intuition about the data and the
task by synthesizing their prior experiences, their experience
with the data, their reading of the available documentation,
and their interactions with experts [2].

Data scientists’ informally-acquired intuition about a dataset
and ML task can be understood as a derivation from domain
knowledge, or relevant information about the project’s area
of interest. This can include an understanding of the project
goals, the environment in which capabilities will be deployed,
the contexts in which analyses will be interpreted, how data
was collected, and what data values mean. In practice, data
scientists’ derived domain knowledge is often satisficing; they
may learn only what they need to perform the tasks as they
understand them with the data they have available [3].

The process of collecting domain knowledge is necessary
for every project, but there is not a generally accepted frame-
work for how data scientists incorporate domain knowledge
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into their projects. As a discipline, data science is sometimes
depicted as interacting with reliable standards and practices,
but it is inherently heterogeneous: each dataset and task
is different, and the domain knowledge collection process
requires collaboration between data scientists and domain
experts [4]. These subject matter experts, or SMEs, are people
with extensive knowledge and skills in a certain domain
[5], and though data scientists may be able to intuit some
domain knowledge, collaboration with SMEs is particularly
necessary when projects with data science components are
not themselves about data science (e.g., business analysis,
predictive health modeling).

As data scientists design and develop an AI-enabled system,
SME collaboration can help foster the trustworthiness of the
eventual system. Ensuring that a system meets user expecta-
tions in a deployed environment requires understanding the
task, its background, the deployed environment, the data as a
collection of data points, and the dataset as a whole, all of
which are topics around which data scientists and SMEs can
build a common understanding to facilitate project success.

The main contributions of this work are:

• A definition of the data curation phase of the AI product
lifecycle, distinguishing how data is prepared for AI/ML
from how data is obtained or annotated

• An actionable definition of trustworthiness for AI-enabled
systems, concretely grounding data science practice amid
the need for reliable systems

• A consolidated discussion of the need for and methods of
practical collaboration between data scientists and SMEs,
including references to example open source tools for
domain knowledge elicitation and data curation

• Twelve domain knowledge questions, consolidated in Ta-
ble I, to help guide collaboration between data scientists
and SMEs

In Sections II and III, we define data curation for trustworthy
AI-enabled systems, particularly relative to data science in
practice and what is meant by data in this context. The
following Sections IV, V, and VI reflect the categories of
domain knowledge elicitation questions in Table I, and discuss
the high level elicitation goals represented by the questions.



TABLE I
DOMAIN KNOWLEDGE QUESTIONS

Section Question

# Title Possible Wording

IV 1 Task What is the task?

2 Current Approach How is the task currently done? What are current practices and workflows?

3 Current Limitations What limitations in the current approach will be addressed by an AI-enabled system?

4 Performance Evaluation How will the approach be evaluated? What metrics are currently in use?

V 5 Systematic Noise What technology was used to measure and record values in the data, and how might that
technology systematically introduce noise? Put another way, are any of the features or labels
imperfect proxies and, if so, how do they systematically differ from the true features and labels?

6 Missing Values What does a missing value indicate (e.g., not measured, not recorded, a negative result)? Is it
completely random whether a value is missing, or else are some observations more likely to
have a missing value?

7 Allowable Values What is the allowable range or set of values for each feature? Does a certain value in one feature
rule out the possibility of the same observation having an otherwise permissible value in another
feature?

8 Domain-Specific Feature Engineering Is it possible (i.e., for a trained human analyst or researcher) to determine the label (or, more
generally, to perform the AI-enabled system’s task) from exclusively the features present in the
dataset? If so, what subsets or combinations of features would be most important to making the
determination? If not, which important features are missing?

9 Selected Characteristics Are there dimensions of diversity in the data, either explicitly encoded in a feature or latent
among the aggregate of features, along which reliable performance is key?

VI 10 Data Coverage Is each possible input in the deployed environment similar to at least one data point in the
dataset? How frequently is the AI-enabled system, once deployed, expected to encounter an
input substantially different from all the available data?

11 Covariate Shift Are certain kinds of inputs more or less common in the deployed environment than they are
represented in the data available for development? How does the true distribution of values for
each feature differ from the distribution observed in the data?

12 Label Shift Would a feature vector, if observed in the deployed environment, have a different true label
value (i.e. ”right” answer for the AI-enabled system to predict) than the same feature vector is
labeled in the data? For instance, in the case of a binary label, are borderline cases more likely
to be labeled with a 0 in the data but a 1 in the deployed environment? Are there other such
biases in the data that should not be replicated in the behavior of the AI-enabled system?

II. AIM FOR AI TRUSTWORTHINESS IN THE DATA
CURATION PHASE

A common way parameters are learned from data is through
ML: a model architecture is selected and curated data are used
to train and validate the model’s parameters. Data curation,
the process of preparing an existing dataset for use with an
AI-enabled system, is specifically the act of consuming one
dataset and creating another from which parameters will be
derived. Data curation comprises a significant phase in the AI
product lifecycle [2], and we contend that data curation is not
just a preparatory step for building an AI-enabled system but
an opportunity to promote trustworthiness in that system.

The data curation phase is an early and requisite phase
in the development of any system that incorporates an ML
model. During curation, data scientists split available data into
training and validation datasets. Data curation is performed
after all data has been obtained and annotated and concludes
with the completion of ML model training. That is, data
curation may include preliminary training and evaluation of
initial models because preliminary results may inform further

curation decisions.
We focus on curation to support the trustworthiness of a

deployed AI-enabled system. In this paradigm, a data scientist
intends to build and deploy an AI-enabled system, intends that
system to be trustworthy, and prepares training and validation
datasets in support of those goals. Trust is complex and
trustworthiness multifaceted [6], but for this paper, we scope
the goal of trustworthiness to what we call an actionable
definition of trustworthiness for AI-enabled systems:

A trustworthy AI-enabled system must be optimized
for performance on the true distribution of inputs it
will encounter in a deployed environment.

This definition does not encompass all aspects of trustwor-
thiness; we contend that it is a necessary if insufficient
condition for trustworthiness. Moreover, this definition can be
made actionable through data curation. That is, data curation
activities can support the optimization of performance on the
true distribution and thus foster AI trustworthiness.

Measures of performance vary based on the task and design
of the AI-enabled system, but they should encapsulate the
expectations of the ultimate users of the deployed system.



Many performance metrics are collected, described, and im-
plemented in Scikit-Learn [7], and fairness metrics specifically
are implemented in AI Fairness 360 [8]. See Section III-C for
a discussion of the wide applicability of fairness metrics.

Our actionable definition of trustworthiness references the
true distribution of inputs in the deployed environment. Impor-
tantly, we do not assume that the data constitute a representa-
tive sample from the true distribution. In many cases, the data
are repurposed or were originally created opportunistically.
This is often unavoidable. For instance, a forecasting model
is necessarily trained on historical data and predicting on the
future, whose distribution could differ substantially from the
past.

Nevertheless, we contend that the demonstrable trustwor-
thiness of an AI-enabled system is, in fact, constrained by
the extent to which the true distribution is known. Most data
curation techniques expect this knowledge to be in the form
of a representative sample of data from the true distribution,
which we refer to as the validation set. The validation set
might be extracted from the larger pool of data available for
development (the remainder of which comprises the training
set), or it could have been created independently from the
rest of the data by sampling directly from the deployed
environment. Since the data curation phase comes after the
data have been obtained, we assume that the contents of the
validation set have been obtained but, possibly, have not been
extracted from the data as a whole. In Section VI, we offer
guidance for eliciting subject matter expertise that can be used
in extracting the validation set from a larger dataset that is not
representative of the true distribution yet is broad enough to
encompass common inputs in the deployed environment.

There may be many reasons that knowledge of the true
distribution is unavailable, including, for military applications,
information security. Even so, the performance of an AI-
enabled system can only be assured and optimized on known
distributions. The U.S. Department of Defense has adopted
the DoD AI Ethical Principles [9], including the “reliable”
principle, with which our actionable definition aligns:

“The Department’s AI capabilities will have explicit,
well-defined uses, and the safety, security, and effec-
tiveness of such capabilities will be subject to testing
and assurance within those defined uses across their
entire life-cycles.”

The true distribution of inputs in the deployed environment
is part of the definition of an AI-enabled system’s use. The
degree to which trustworthiness (by our actionable definition)
can be measured, demonstrated, and achieved is limited by the
extent to which the validation set is representative of the true
distribution.

III. UNDERSTAND DATA AND ITS LIMITATIONS

In the data curation phase of the AI product lifecycle, data
creation and annotation is already complete. A data scientist
a) has access to a dataset, b) intends to use the dataset to learn
parameters for (i.e. train) a ML model, and c) aims to promote
the trustworthiness of the system by training the model on a

curated version of the dataset. This section defines what is
meant by data in this context, and how that definition relates
to the work of data scientists generally and the data curation
phase specifically.

A. Enumerate features and labels of data points

ML can be defined as the “creation of mechanisms that
can look at examples and produce generalizations” [10]. In
order to do this, the “real world” must be encoded in discrete,
machine-interpretable values. When data are prepared for
machine learning contexts, entities or phenomena of interest
are represented as sequences of features, or encoded aspects
of the entity or phenomenon.

A single data point is typically represented as a real-valued
vector dx ∈ Rm, where m is the number of features.1

Traditionally, labeled data points consist of two parts: the
features (dx) and label(s) (dy ∈ R).2 For example, an image
of a ship may be represented as pixel values (features) and
annotated with whether the ship is a military or civilian
watercraft (dy ∈ {0, 1}). While it is typical for a dataset to
have a single label, some datasets include multiple labels such
that the values of the labels for a data point form a vector
(dy ∈ Rl, where l is the number of possible labels).

A label is simply an encoded aspect that an ML model is
trained to predict from the features of each data point [11]. We
generalize this formalization of data by combining features and
labels into a single representation. In this view, data point d ∈
D describes all encoded aspects of an entity or phenomenon
after dataset creation and annotation. Consider data describing
ships, such that each data point contains encoded information
about a ship’s appearance (e.g., pixel values in an image) as
well as other aspects (sometimes called metadata) like its age,
country of origin, and type.

In framing d in this way, data points can be considered
without reference to a specific AI-enabled system, and a
system’s task determines which encoded aspects are labels. For
example, one system might seek to predict ship type (military
or civilian) from pixel values alone. In this case dx would be
the pixels, dy would be the ship type, and all other encoded
aspects would be ignored. Another system may seek to predict
country of origin from all aspects except the pixels, and a
third system might attempt to cluster similar images on the
sole basis of pixels and without regard to the other encoded
aspects. All such cases could leverage the same d, but the
parts of the data point that are chosen to be features or labels
vary by task. This is important because many spaces where

1In practice, human-interpretable features (e.g., an object’s length, the date
of a record) can be represented as more than one value in a vector. It is also
increasingly common for individual features to carry no explicit meaning at
all, such as in the case of word embeddings. Therefore m should be more
formally understood as the length of the feature vector, rather than the number
of features.

2In many classification problems, real-world data is annotated dy ∈ N,
where each class is represented by a natural number (e.g., fishing vessel = 0,
passenger ship = 1, military ship = 2, etc.). However, we consider dy more
broadly to encompass datasets curated for other purposes, like regression-
based problems.



ML is applied are data-scarce. Realistically, any data scientist
must consider reusing datasets.

In summary, we formally define a data point as a real-valued
vector the length of the total features and labels available
after creation and annotation (d ∈ Rm+l). This generalized
d contains all encoded aspects of the entity available during
development of the AI-enabled system, which can be under-
stood as identifying correlations between those aspects.

B. Recognize limitations of data

The choice of features that will be used in the final model
and how those features should be encoded is just that: a choice.
Choices are made about what to include, what to exclude,
and how to reduce the complexities of reality into machine-
interpretable representations [2]. A model’s success hinges
on these choices. Creating dataset D—describing real-world
entities and phenomena as data points—is a human-centered
process in which data are not passively received from an
environment but are purposefully created. In some contexts,
an image may be a useful approximation of an entity. In
others, it may be necessary to encode other aspects of an entity
into its representation. There may also be tasks in which the
data collection context itself is important to encode (e.g., the
camera which took the image, the time of day). Simplifying
reality into data points—encoding some aspects as features or
labels—excludes other aspects.
D is a manifestation of choices, and d may not describe an

entity or phenomenon relative to the goals of the AI-enabled
system. Instead, d reflects the aspects of the real world that
were chosen during the creation of D and the further choices
of how those aspects would be encoded. That is, d is the
entity or phenomenon from the perspective of the AI-enabled
system, but that doesn’t mean d is a good or even sufficient
representation for the task. It is merely the data point that was
created.

To highlight the limitations in data, we contrast a data point
d with an ideal data point d̃ in an ideal dataset D̃. The
ideal vector, d̃ ∈ Rm+l+p, contains all possible aspects of
the entity or phenomenon of interest, encoded in all possible
ways (constrained to real values), such that p refers to the size
of the possible feature space (m� p ≤ ∞). While no dataset
actually consists of idealized data points, this representation
highlights the choices that are made in the construction of D.
A real entity or phenomenon is only partly represented by dx

and dy; the rest of its representation appears in the idealized
d̃p.

This formalism is particularly helpful relative to trustwor-
thiness and fairness in AI, as issues of relative importance,
mischaracterization, or distribution shift often occur in the
d̃p space [12], [13]. This may be because relevant aspects
are missing (and only appear in d̃p) or because aspects are
encoded in d as proxy features or labels where a more direct
encoding appears in d̃p.

When classifying images into military or civilian ships, a
relevant aspect may be the presence of fishing nets (d̃pj ∈
{0, 1}). In some images, this presence may be seen in the

images and thus encoded by proxy in the pixels. In others, the
image may be taken from an angle which obscures nets and
thus does not represent d̃pj even by proxy. ML models trained
on such images, then, may yield unexpected classification
results relative to an important but only partially encoded
aspect of the entities of interest.

Data curation for trustworthy AI takes cues from the true
distribution of inputs in the deployed environment. The true
distribution encompasses the relationships between dx, dy ,
and d̃p. To account for the choices made in dataset creation
and the potential differences between the environment in
which the data were created and the deployed environment,
data scientists need to be aware of the distribution of features
and labels (e.g., training data is 50/50 military and civilian ship
images, but the deployed environment is 70/30) and how the
real-world entities or phenomena represented by the deployed
environment’s data differ from those in the training data, which
might influence input features and labels.

C. Identify selected characteristics of data points

We consider the aim of promoting AI trustworthiness, ac-
cording to the definition in Section II, which partially overlaps
with the aim of related academic literature at the intersection
of trust, AI/ML, and fairness. This literature often references
“protected” or “sensitive” attributes, typically in relation to
systems in which people are represented as data points (e.g.,
race, gender) and aims to develop AI-enabled systems that
perform without systemic bias toward or against a given group.

While the specific goal of fairness with respect to protected
attributes is relevant to many mission sets (e.g., suicide risk
prediction among soldiers [14]), we see it as a special case
of the concept of trustworthiness as defined in this paper. If
the deployed AI-enabled system is expected to perform fairly
across an attribute, then part of optimizing performance entails
optimizing fairness across that attribute. Rather than focus
on legally protected attributes, we conceptually generalize
this idea to selected characteristics: any aspects of the entity
or phenomenon of interest which are to be considered of
particular interest (e.g., the type of ship, whether the ship has
fishing nets) and in need of special handling (e.g., performance
must be equal for all ship types). The task and the data
influence which features are selected characteristics.

Fairness is a social concept that is formulated in different
ways depending on the problem. By formally defining d̃, we
can understand fairness in the context of d as a representation
of a real-world entity. A model’s performance might vary
along different dimensions in D. In order for a model to be
fair, the level of performance of the model must not vary along
features or proxies that encode a predetermined dimension
of note (i.e. a selected characteristic). Given this conceptual
generalization, the academic literature focusing on protected
attributes offers data curation techniques that can be used for
any selected characteristics. The selected characteristics (if
any) would be a small subset of the features in D. Drawing
from this literature, we consider three types of algorithmic
fairness [15],



• Equal Opportunity: The proportion of true positives
should be independent of selected characteristics, given
the true label.

• Equalized Odds: The proportion of true positives and
false positives should be independent of selected char-
acteristics, given the true label.

• Demographic Parity: The likelihood of a given label
should not vary on selected characteristics.

Consider a dataset where each data point represents a ship
such that dx contains some encoded aspects of the ship and dy

reflects the country of origin. Further consider the ship type as
the selected characteristic (ShipType = {military, civilian}).

A classifier satisfying Equal Opportunity, the most specific
type, would yield the same rate of correct predictions for
military as for civilian ships.

P (ŷi|ShipTypea, yi) = P (ŷi|ShipTypeb, yi)

That is, given the true label, the probability of predicting that
true label does not change in the presence of the selected
characteristic.

A more general type is Equalized Odds, where a satisfying
classifier would yield an equal rate of correct and incorrect
predictions for military as for civilian ships.

P (ŷ|ShipTypea, y) = P (ŷ|ShipTypeb, y)

That is, given the true label, the probability of predicting
any label does not change in the presence of the selected
characteristic.

A classifier satisfying the most general type of fairness
considered here, Demographic Parity, would yield an even dis-
tribution over labels (e.g., United States of America, People’s
Republic of China) given a ShipType.

P (ŷ|ShipTypea) = P (ŷ|ShipTypeb)

That is, the probability of predicting a given label should be
completely independent of a selected characteristic, regardless
of the true label.

These types of algorithmic fairness are framed relative to
outcomes:3 the probability of ŷ given the selected characteris-
tic. It is expected that this framing will be typical of real-world
scenarios. Rather than a data scientist unilaterally selecting
characteristics and pursuing algorithmic fairness, it is likely
that a SME, decision maker, or other stakeholder has defined
some selected characteristic and some notion of fairness the
AI-enabled system should satisfy (e.g., equal performance on
civilian and military ships), including those that are legally
defined as relevant. Question 9 in Section V elicits selected
characteristics.

Promoting trustworthiness—in particular, performance in
the deployed environment according to performance measures

3As defined here, algorithmic fairness is also framed relative to clas-
sification. While this is rhetorically convenient, fairness is not restricted
to classification problems. Demographic parity, for example, may be more
generally stated as being satisfied when the performance of the AI-enabled
system – regardless of task or performance metric – does not vary on selected
characteristics.

that encapsulate user expectations—entails promoting fairness
with respect to selected characteristics. Selected characteristics
are aspects of real-world entities or phenomena that have been
chosen as properties which should not impact performance in
the deployed environment. A model may learn relationships
between ShipType and the country of origin, but if a SME
has determined that those relationships are inappropriate for
the deployed environment—that ShipType should not influence
predictions—then data curation to improve algorithmic fair-
ness also supports performance.

IV. BUILD COMMON GROUND TO UNDERSTAND THE TASK
IN THE DEPLOYED ENVIRONMENT

According to our actionable definition (see Section II),
trustworthiness of an AI-enabled system reflects the degree to
which performance in the deployed environment meets user
expectations. Data curation helps meet these expectations by
shaping the training and validation data in the development
environment with the goal of optimizing performance on the
true distribution of inputs in the deployed environment. This
optimization, however, requires understanding the deployed
environment explicitly (e.g., what will the deployed data look
like) and implicitly (e.g., what are the processes by which data
is created in the deployed environment and how do they differ
from the processes in the development environment). Data
curation to develop trustworthy AI requires understanding both
the inputs to the AI-enabled system and, since data is the
product of choices (see Section III-B), the task for which the
system is being designed.

A. Domain knowledge about the deployed environment

The domain knowledge pertaining to the background and
context of a project can be described in part as the answers to
a variation on the Heilmeier Catechism [16]–[18]:

1. Task: What is the task?
2. Current Approach: How is the task currently done?

What are current practices and workflows?
3. Current Limitations: What limitations in the current

approach will be addressed by an AI-enabled system?
4. Performance Evaluation: How will the approach be

evaluated? What metrics are currently in use?
While some projects presuppose a task (e.g., classify rel-

evant documents), successfully answering the first question
requires a broader understanding of the task landscape, which
may, in turn, shape the data scientist’s understanding of the
deployed environment or the chosen performance metrics (e.g.,
what does relevant mean, do documents need to be ranked
by relevance, is there some top-k for which relevance is
most important). Successfully answering the second and third
questions serves a similar purpose. Even if the decision to
design and implement an AI-enabled system has already been
made, the data scientist can better understand the task and
deployed environment by learning how it was done prior to
such a system or how a new AI-enabled system will fill a gap
in existing workflows. Performance is measured relative to the
problem that an AI-enabled system is attempting to solve, as



seen through the eyes of users. The fourth question directly
seeks measures of performance in the deployed environment,
which in turn helps the data scientist ensure the system is opti-
mized using such metrics and may lead to the identification of
other performance metrics that capture other user expectations
of the AI-enabled system.

Consider a system designed to classify documents into one
of several categories, which was a task previously performed
by human experts. Without the appropriate domain knowledge,
a data scientist may design a system and evaluate according
to accuracy (i.e., how many documents did the system classify
correctly) and have a system that yields X% accuracy on a
set of validation documents.

Domain knowledge about the task in the deployed environ-
ment, however, may reveal details like the importance of some
categories over others,4 the accuracy of human experts on the
same validation data (which may be worse than X%), the
rate of agreement between experts classifying the same set of
documents, or the contours of the task in practice (e.g., in the
deployed environment, experts may first triage relevant and
irrelevant documents prior to classification activities). These
pieces of domain knowledge are critical in informing data
curation for trustworthy AI and may also help interpret results
or design models.

B. Building and maintaining common ground

The questions in Table I are useful in eliciting information
about the deployed environment, but asking the questions is
just one part of incorporating domain knowledge into an AI-
enabled system. Data science projects are typically situated
in domains outside of computer science or statistics, and the
data describes entities or phenomena in the domain (e.g.,
chemistry, public health, military equipment). Communication
gaps between data scientists and SMEs or other stakeholders
are common in such contexts, even though shared domain
knowledge is critical to project success [1], [19], [20].

Sharing domain knowledge between data scientists and
SMEs is complicated by the quantity and diversity of col-
laboration. While more information may yield better results,
comprehensive information sharing is inefficient [21]. It is
likely not possible or desirable, for example, to transform
a data scientist into a chemistry expert, or a chemist into
an expert data scientist. The goal of data science and SME
collaborations is not to ensure each member of a project
has complete understanding of the problem space but to
provide enough of a shared language to facilitate work [21].
Furthermore, it is common for conflict to arise, as SMEs may
not understand “the hurdles and contributions of data scientists
and vice versa” [1].

The collaboration between data scientists and SMEs can be
understood to build a shared mental model, where translators
or brokers help each side understand the other [1]. By contrast,
we prefer to frame the collaboration as building common

4The importance of labels relates to the interpretation of performance in
the deployed environment, which is distinct from the prevalence or meaning
of labels in the data, which relate to the properties of individual data samples.

ground, or a third space, between data scientists and SMEs: a
hybrid environment which can be constructed at the boundary
between disciplines [21]. The common ground is a space
in which each side can “compare, negotiate, and integrate
goals, perspectives, and vocabularies, as well as discuss shared
meanings and protocols” [21]. On common ground, data
scientists can ask more nuanced or accurate questions of SMEs
who can in turn provide more actionable insights to the AI
development process, yielding better outcomes for the project.

The creation of common ground is a bidirectional process
which allows data scientists to learn about the project domain,
allows SMEs to learn about data science relative to the project,
and enables both groups to understand the terms, goals, and
processes of one another (e.g., via the questions outlined
in Table I). This notion of common ground is intentionally
distinct from the typical unidirectional framing of data science
projects, in which SMEs provide domain knowledge and data
scientists are consumers of it [2], [4], [19], [20].

Once established, common ground must be maintained
throughout the project lifecycle [21]. System requirements
may change over time, and it is possible that the initial
understanding between data scientists and SMEs becomes out
of sync with the needs of the project. Even if the requirements
and the evaluation methods of the system remain consistent
over time, however, common ground must still be maintained;
as the data scientists and SMEs learn more and understand one
another better, the shared vocabulary and goals must reflect
these changes.

The questions given in Section IV-A invite SMEs to de-
scribe the background and context for the task in their own
words. The data scientist can then clarify the words’ meaning.
Together, the data scientist and SME arrive at the terminology
of their common ground. As the data scientist proceeds to
curate the data, each step aims to improve performance on the
task, as performance and the task are defined in the common
ground with the SME.

V. CONDUCT BIDIRECTIONAL COMMUNICATION TO
CHOOSE DATA TRANSFORMATIONS

In this section, we describe questions that inform data trans-
formations that the data scientist may take to begin curating
the data, i.e., creating, from the data available, a new dataset
that will be used directly for training and validating the model.
While it is often the goal of deep learning to allow the models
to draw connections between features, feature engineering is
present to some extent in every machine learning problem [10].
Working with domain experts, data scientists must codify what
is known about the data in order to facilitate data curation
or model design decisions [16], [22]. Transformations include
applying closed-form mathematical functions to individual
features or labels, aggregating multiple features or labels
into new ones, and removing data points [23]. This section
describes how to ask questions about individual features and
labels, including steps the data scientist can take to prepare
for initial and follow-up interactions with the SME.



5. Systematic Noise: What technology was used to
measure and record values in the data, and how might that
technology systematically introduce noise? Put another way,
are any of the features or labels imperfect proxies and, if so,
how do they systematically differ from the true features and
labels?

Not all data are correct. Some commonly used technologies,
including biomedical measurement devices like electrocardio-
gram machines, introduce noise for which there are standard
denoising techniques in the literature [24]. Once the data sci-
entist learns what technology was used in dataset creation, they
can research and implement appropriate denoising techniques
on the features as necessary. If the noise is predictable, it is
possible that it would not even register as a statistical anomaly
in some algorithms, so technology-specific algorithms might
need to be employed.

6. Missing Values: What does a missing value indicate
(e.g., not measured, not recorded, a negative result)? Is it
completely random whether a value is missing, or else are
some observations more likely to have a missing value?

In preparation for asking a SME about missingness, the
data scientist can first quantify and visualize the patterns of
missingness. If a systematic pattern of missingness emerges,
then it is unlikely that missingness is completely random. If
missingness is in fact rare and completely random, then it may
be ameliorated by removing (i.e., filtering) the observations or
features with missing values.

If the SME and data scientist conclude that data points with
missing values must be filled in and used, the data scientist
can propose and experiment with imputation techniques. Im-
putation is not appropriate for all cases, for example if the
label is missing a value, it is unlikely that it will be beneficial
for the model to impute it. Depending on the proportion of
values that are missing in the dataset, the choice of imputation
approach can have a large effect on the data. This is in direct
opposition to the goal of imputation, which is to make the
missing value not impact the trained model’s behavior without
dropping the feature or affected data points entirely. Simple
imputation approaches include filling the missing values in
a feature with a centrality statistic (e.g., mean or mode)
and propagating nearby values for similar observations (e.g.,
copying last month’s sales volume of the same company to
this month). Where simple imputation falls short, a model
can be trained to predict missing values. Regression and k-
Nearest Neighbors models are more interpretable, hence easier
for a SME to review, but neural networks can be used, too
[23]. Scikit-learn, for example, hosts a library5 of imputers
that can easily be installed and used in any Python project
[25]. After exploring the options and settling on one or more
candidate imputation methods, the data scientist should present
the methods to the SME, along with examples of its effect on
individual observations, for the SME to review.

7. Allowable Values: What is the allowable range or set of
values for each feature? Does a certain value in one feature rule

5https://scikit-learn.org/stable/modules/impute.html

out the possibility of the same observation having an otherwise
permissible value in another feature?

In preparation for asking a SME about allowable values, the
data scientist can compute the range or set of values for each
feature across all data points in the original dataset. It may
also be helpful to flag possible outliers for the SME to review.
Chicco et al. and Nicholson et al. list several techniques for
identifying possible outliers and even correcting them [23],
[26]. Additionally, there are statistical anomaly detection and
correction algorithms implemented in tools such as CleanLab
[27] that can be used by data scientists in order to avoid such
noise in the final dataset.

8. Domain-Specific Feature Engineering: Is it possible
(i.e., for a trained human analyst or researcher) to determine
the label (or, more generally, to perform the AI-enabled
system’s task) from exclusively the features present in the
dataset? If so, what subsets or combinations of features would
be most important to making the determination? If not, which
important features are missing?

If the SME recommends combinations of features, the com-
binations could be used as inputs into the model. While there
are many feature engineering approaches, the data scientist can
research those used on similar data, such as data of the same
type or representing the same kind of entities or phenomena.

The SME might also have insight into whether or not
the features in the dataset are collinear. Collinearities can
be problematic for ML models downstream of the data cu-
ration process. Specifically, regression-based models assume
independence between features. Collinearities can lead to
unreliable predictions in regression and are easily missed
when using feature weighting metrics such as permutation
importance, as these metrics only test one features’ importance
at a time [28]. Should a SME indicate that two features might
be collinear, a data scientist can evaluate feature importance in
an initial model accordingly. Tools such as the RWA Web6 can
help calculate relative importance of features [29] and reveal
collinearities.

9. Selected Characteristics: Are there dimensions of
diversity in the data, either explicitly encoded in a feature or
latent among the aggregate of features, along which reliable
performance is key?

As described in Section III-C, these could be selected
characteristics or subpopulations within the data distribution
across which users will expect similar performance. As an
example from computational chemistry, pharmaceutical and
industrial chemicals differ, but a model predicting a chemical’s
toxicity needs to perform similarly across both kinds.

If a selected characteristic is a feature or can be system-
atically derived from features (e.g., by combining multiple
features in a formula), the data scientist can compute group
parity metrics for each of the selected characteristics. Common
metrics are described and implemented in the Aequitas tool
[30].

6https://rwa-web.shinyapps.io/multipleregression/



If a selected characteristic is latent among the features and
cannot systematically be derived, then it may be necessary to
annotate the data with the selected characteristic, which falls
outside the scope of data curation and this paper.

VI. ELICIT INFORMATION ABOUT THE TRUE
DISTRIBUTION

In accordance with the DoD AI Ethical Principle “reliable”
[9], we argue that an AI-enabled system can only be trust-
worthy to the extent to which its performance was optimized
for the true distribution of inputs in its deployed environment.
Actionable information on the true distribution, or knowledge
data scientists can elicit, is necessary for this optimization. We
divide this distributional knowledge into two categories:

1) Estimated parameters of the true distribution
2) A dataset that is representative of the true distribution

and may be a smaller auxiliary to the larger pool of
training data

Data scientists are not assumed to be domain experts, and
therefore require authoritative sources attesting that either (1)
the parameters are sufficiently accurate or (2) the pre-specified
set is actually representative. These authoritative sources can
include SMEs, project decision makers, and well-established
sources of population-level statistics (e.g., the U.S. Census
[31] or CIA World Factbook [32] if the true distribution is the
population of people in the United States or other countries,
respectively).

One goal of eliciting distributional knowledge is to obtain a
set of validation data points that is as representative as possible
of the true distribution. If the data as a whole are representative
of the true distribution, then splitting techniques [33] can be
used immediately to select a validation set. Alternatively, a
representative validation set may have been created separately
from the training data (e.g., by conducting measurements in
the deployed environment).

The remainder of this section is dedicated to a common
scenario in which the data are not observations or measure-
ments from the deployed environment and may not accurately
represent it. Three kinds of discrepancies are elicited in the
following questions: data from only part of the true distribu-
tion, data whose feature vectors offer a skewed view of the
true distribution, and data whose labeling scheme differs from
the truth in the deployed environment.

10. Data Coverage: Is each possible input in the de-
ployed environment similar to at least one data point in the
dataset? How frequently is the AI-enabled system, once de-
ployed, expected to encounter an input substantially different
from all the available data?

The purpose of this question is to assess how much of
the true distribution can be represented in a validation set.
For example, suppose the deployed environment is the Arctic
Ocean and the available data are all from tropical seas. Some
fraction of the true distribution of inputs may reflect the
presence of sea ice even though none of the data points from
the tropics have sea ice present. Only the ice-free parts of the
true distribution can be represented in a validation set, and

the performance of the system can only be measured on that
fraction of the true distribution. When the representativeness
of the validation set is limited, only limited trustworthiness
can be demonstrated.

11. Covariate Shift: Are certain kinds of inputs more
or less common in the deployed environment than they are
represented in the data available for development? How does
the true distribution of values for each feature differ from the
distribution observed in the data?

This question aims to elicit information about covariate
shift, which refers to a discrepancy between the distribution of
feature vectors in the training data and deployed environment
[34]. To optimize for performance on the true distribution, data
scientists must compensate for any such discrepancy.

In preparation for asking the SME about the true distri-
bution, the data scientist can fit a probability distribution to
the data and compute statistics. For example, if the empirical
distribution of each feature is approximately unimodal and
symmetric, a normal distribution might be a decent fit and
so sample mean and standard deviation are relevant statistics
to compute. SciPy7 implements methods for fitting to many
probability distributions [35].

It is likely that a SME will only offer information on the
true distribution of human-interpretable features. If a feature
has semantic meaning, there may be records or SME intuitions
on the relative frequency of each of its possible values in
the deployed environment. It is less likely that such domain
knowledge exists for features without clear semantic meaning,
unless the same featurization scheme has been used previ-
ously on data from the deployed environment. For example,
coordinates of a text or image embedding are not human-
interpretable, so unless the same embedding scheme has been
used widely, it is unlikely that there is information available
describing the features’ true distribution. If all features lack
this kind of semantic meaning, eliciting information about the
true feature distribution may require labeling data points with
human-interpretable features for which information on the true
distribution is known, a data annotation task outside the scope
of data curation.

12. Label Shift: Would a feature vector, if observed in
the deployed environment, have a different true label value
(i.e. ”right” answer for the AI-enabled system to predict) than
the same feature vector is labeled in the data? For instance,
in the case of a binary label, are borderline cases more likely
to be labeled with a 0 in the data but a 1 in the deployed
environment? Are there other such biases in the data that
should not be replicated in the behavior of the AI-enabled
system?

This question probes the discrepancy between the task
encoded in data and the task of the AI-enabled system. In
general, the AI-enabled system can only be optimized for the
task that the data encodes. However, if the tasks differ in
a structured way, then mitigation is possible. In the case of
binary labels described in the question, the decision boundary

7https://docs.scipy.org/doc/scipy/reference/stats.html#module-scipy.stats



for a classifier can be chosen with the deployed environment,
rather than the training data, in mind. In effect, the model can
be made universally more eager or cautious to predict a label
of 1 in order to calibrate it to the true distribution.

Data scientists can prepare to ask SMEs this question by
identifying example data points that are close to a decision
boundary. These could be found manually or by training an
initial model on all data points, then feeding them back into
the trained initial model as inputs and computing distance to
a decision boundary. By presenting these borderline cases and
their labels in the dataset to SMEs, data scientists can help
elicit whether the decision boundary in the dataset matches
the intended decision boundary of the AI-enabled system.

Discussing specific examples with SMEs to understand
features, their labels, and their relationship relative to domain
knowledge may focus on edge cases or examples prone to
misclassification. This discussion, however, may be useful for
understanding the data more broadly, as edge cases may reveal
larger patterns when discussed with SMEs [17].

Note that question 12, unlike the other questions, is only
relevant to supervised learning projects—that is, tasks for
which one or more encoded aspects of the data have been
designated as labels.

The Sheffield Elicitation Framework (SHELF) provides
an application that is effective for eliciting true distribution
parameters from SMEs [36]. The application asks each SME
to estimate the true parameter and also to provide information
on the uncertainty in their estimate. The interface is based on
research into eliciting probabilities from experts [37].

SHELF may be useful when interacting with SMEs to
answer questions in this section seeking estimates of uncertain
quantities:

• The fraction of the true distribution that is substantially
similar to a point in the data (Question 10)

• Each feature’s true distribution, as contrasted with its
empirical distribution in the data (Question 11)

• Each label’s true distribution, as contrasted with its em-
pirical distribution in the data (Question 12)

Once distributional knowledge has been obtained, the data
scientist can use rejection sampling [38] to winnow the data
down to a subset that matches the elicited estimated param-
eters of the true distribution. Thereafter, splitting techniques
[33] can be used to shrink the size of the validation set to
free up more training data while keeping the validation set
representative of the true distribution.

VII. CONCLUSION

Data curation is an underutilized opportunity to promote
trustworthiness early in the development of an AI-enabled
system. Trustworthiness, as defined in this paper, entails opti-
mizing an ML model for performance on the true distribution
of inputs in the deployed environment. For a data scientist
to pursue trustworthiness, they must understand the deployed
environment, the task the AI-enabled system is intended to
perform, and the inputs it is likely to receive once deployed.
While a data scientist may accumulate a working knowledge

of the domain through interaction with the data, collaboration
with SMEs and use of other sources of domain knowledge is
key to making data curation decisions that promote trustwor-
thiness.

In addition to motivating and framing the necessary inter-
action with SMEs and the elicitation of domain knowledge,
we enumerate twelve essential questions to elicit domain
knowledge in Table I. These questions elicit why the AI-
enabled system is being built (i.e., the task with which AI is
to assist), how the data scientist can make nuanced decisions
about data transformations, and where the AI-enabled system
will be deployed (i.e., discrepancies between the available
dataset and the true distribution). The questions are written
to be accessible to SMEs from outside data science, and we
provide specific guidance and example tools that data scientists
can use to maintain common ground and facilitate bidirectional
communication throughout the elicitation process.

While each dataset and each AI task is different, our
twelve questions point to pieces of domain knowledge that are
commonly needed in data curation. There is an opportunity
to build and mature tools to better facilitate the elicitation
of domain knowledge in line with each of the questions we
articulate. With better collaboration between data scientists
and subject matter experts, domain knowledge can be more
effectively shared and acted upon.

Though more work is needed to develop new data cura-
tion approaches, link domain knowledge directly with data
science workflows, and build tools to support knowledge
elicitation, this paper provides a framework for understanding
the intersection of domain knowledge, trustworthiness, and
data curation, which is an increasingly important goal as AI-
enabled systems become more integrated into commercial and
government environments.
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